**Contact Information:**

Robin Tucker-Drob

Texas A&M Department of Mathematics

Mailstop 3368

Texas A&M University

College Station, TX 77843-3368

rtuckerd at math dot tamu dot edu

**About me:**

• I am an associate professor in the department of mathematics here at Texas A&M.

• Here is my cv.

• From summer 2013 until summmer 2015 I was an NSF Mathematical Sciences Postdoctoral Research Fellow based at Rutgers University.

• Here is some of my postdoc application material from 2012.

### Papers

*One-ended spanning subforests and treeability of groups*with C.T. Conley, D. Gaboriau, and A.S. Marks, Submitted. arXiv*Borel asymptotic dimension and hyperfinite equivalence relations*with C.T. Conley, S. Jackson, A.S. Marks, and B. Seward. Submitted. arXiv*Dynamical alternating groups, stability, property Gamma, and inner amenability*, with D. Kerr. To appear, Annales Scientifiques de lâ€™Ecole Normale Superieure arXiv*CAT(0) cube complexes and inner amenability*, with B. Duchesne and P. Wesolek. To appear, Groups, Geometry, and Dynamics. arXiv*Groupds with infinite FC-radical have the Schmidt property*with Y. Kida. To appear, Ergodic Theory and Dynam. Systems. arXiv*Cost of inner amenable groupoids*, with K. Wrobel. To appear, Proceedings of the AMS arXiv*Inner amenable groupoids and central sequences*, with Y. Kida. Forum of Mathematics, Sigma, (2020), vol 8, e29. doi:10.1017/fms.2020.15 arXiv*A new lattice invariant for lattices in totally disconnected locally compact groups*, with B. Duchesne and P. Wesolek. Israel J. of Math. 240.2 (2020): 539-565 arXiv*Superrigidity, measure equivalence, and weak Pinsker entropy*, with L. Bowen. Submitted. arXiv*Invariant means and the structure of inner amenable groups*. Duke Mathematical Journal 169.13 (2020): 2571-2628. pdf*Hyperfiniteness and Borel combinatorics*, with C. Conley, S. Jackson, A. Marks, and B. Seward. J. Eur. Math. Soc. 22.3 (2019):877-892. arXiv*Cocycle superrigidity for translation actions of product groups*, with D. Gaboriau and A. Ioana. Amer. J. Math., 141, no. 5 (2019): 1347-1374. arXiv*Folner tilings for actions of amenable groups*, with C. Conley, S. Jackson, D. Kerr, A. Marks, and B. Seward. Math. Ann. 371, no. 1-2 (2018): 663-683. arXiv*The space of stable weak equivalence classes of measure preserving actions*, with L. Bowen. Journal of Functional Analysis, 274.11 (2018) 3170-3196 arXiv*Weak containment rigidity for distal actions*, with A. Ioana. Adv. in Math., 302 (2016), 309-322. pdf*Approximations of standard equivalence relations and Bernoulli percolation at p_u*, with D. Gaboriau. C.R. Math. Acad. Sci. Paris, 354.11 (2016), 1114-1118. pdf*Brooks's Theorem for measurable colorings*, with C. Conley and A. Marks. Forum of Mathematics, Sigma. vol. 4 (2016). pdf*Borel structurability on the 2-shift of a countable group*, with B. Seward. Ann. Pure Appl. Logic, 167 (2016), no. 1, 121. pdf*Invariant random subgroups of inductive limits of finite alternating groups*, with S. Thomas. Journal of Algebra, 503 (2018) 474-533. pdf*Invariant random subgroups of strictly diagonal limits of finite symmetric groups*, with S. Thomas. Bull. London Math. Soc. 46 (2014), no. 5, 1007-1020. pdf*Mixing actions of countable groups are almost free*, Proc. Amer. Math. Soc. 143 (2015), no. 12, 5227-5232. pdf*Weak equivalence and non-classifiability of measure preserving actions*, Erg. Theory Dyn. Syst., 35 (2015), 293-336. pdf*On a co-induction question of Kechris*, (with L. Bowen), Israel J. of Math. pdf*Ultraproducts of measure preserving actions and graph combinatorics*, (with C. T. Conley and A. S. Kechris), Erg. Theory Dyn. Syst., 33 (2013), no. 2, 334-374. pdf*The complexity of classification problems in ergodic theory*, (with A. S. Kechris), Appalachian Set Theory: 2006-2012; J. Cummings and E. Schimmerling eds., London Math. Soc. Lecture Note Series, Cambridge University Press (2013). pdf

### Teaching

**Teaching:**

- Fall 2020: Math 304 (Linear Algebra), sections 505 and 513. Course web page
- Spring 2020: Math 447 (Principles of Analysis II). Course web page
- Fall 2019: Math 304 (Linear Algebra). Course web page
- Fall 2019: Math 446 (Principles of Analysis I). Course web page
- Spring 2019: Math 423 (Linear Algebra II). Course web page
- Fall 2018: Math 304 (Linear Algebra). Course web page
- Fall 2018: Math 653 (Algebra). Course web page
- Spring 2018: Math 447 (Principles of Analysis II). Course web page
- Fall 2017: Math 446 (Principles of Analysis I). Course web page
- Spring 2017: Math 409 (Advanced Calculus I). Course web page
- Spring 2016: Math 410 (Advanced Calculus II). Course web page
- Fall 2015: Math 304 (Linear Algebra).